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1 Introduction

Topic of the thesis

GANs [1, 2, 3, 4, 5] have, in recent years, achieved impressive results in generating data

that is indistinguishable in quality from real data. They enable the learning of a generator

that transforms a latent space with a simple distribution into a space of real objects

with a very complex distribution. Due to their ability to generate high-quality data,

GANs have been widely utilized in various tasks and fields, including computer vision

[6, 7, 8, 9, 10, 11, 12] and signal processing [13, 14]. However, achieving such high-quality

generation during GAN training requires access to large-scale datasets, which are time-

consuming and expensive to collect. For instance, training the state-of-the-art StyleGAN

model to generate photorealistic human faces necessitated the collection of the FFHQ

dataset [3], comprising 70 thousand very high-resolution (1024x1024) images of faces.

The issue of training GANs on small datasets remains a significant challenge. One

primary approach to addressing this problem is domain adaptation, wherein a GAN is

trained on a new domain with a limited number of examples by fine-tuning a model pre-

trained on another domain with access to a large-scale dataset. For example, to generate

faces in the style of certain artists, where assembling a large dataset is impractical, a GAN

pretrained on a large dataset of photorealistic faces (e.g., FFHQ) can be fine-tuned using

a few example pictures of a particular artist. In domain adaptation, it is crucial which

subset of the underlying model parameters is optimized. This optimization determines

how effectively the underlying model’s knowledge can be transferred to the new domain

and helps avoid mode collapse, to which GANs are highly prone.

This thesis will propose new efficient StyleGAN parametrizations for the domain adap-

tation problem and new compact architectures for the speech enhancement problem, which

also make efficient use of training data. Specifically, this work proposes a domain modula-

tion technique that allows training thousands of times fewer parameters for the StyleGAN

model than the full parametrization for domain adaptation. This innovation enabled the

proposal of the HyperDomainNet [15] model, which addresses the multi-domain adapta-

tion problem. Further development of these ideas led to the discovery of more efficient

parametrizations, such as StyleSpace and Affine+ [16]. Additionally, there has been a

deeper analysis of which parts of the StyleGAN model are crucial in domain adaptation,

and interesting properties of directions from StyleSpace have been uncovered. In the
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realm of speech enhancement, the HiFi++ [17] and FFC-SE [18] models were proposed,

demonstrating superior quality in this task compared to existing approaches, while having

significantly fewer parameters.

As we analyze the problem of efficient GAN training, we aim to answer fundamental

questions, such as: How can we fine-tune GANs for novel domains with limited training

data? What are the most important factors in adapting the generator for domain-specific

content? Can we reduce computational overhead while maintaining or even improving

performance in audio generation and enhancement tasks? These questions form the core of

our investigation, and the subsequent chapters of this thesis aim to provide comprehensive

insights into these essential topics.

In this introduction, we set the stage for a detailed exploration of each of the four

papers, highlighting their specific contributions, insights, and significance in the realm

of GAN-based generative models. By the end of this analysis, we hope to offer a deeper

understanding of how efficient parameterizations can propel GANs towards greater adapt-

ability, robustness, and resource efficiency, thereby contributing to the continued advance-

ment of image and speech generation technologies.

Relevance

This work offers valuable contributions that address critical challenges in training GANs

with limited data and computational resources, which have a significant impact on many

applications in image generation and speech enhancement. Here, we highlight the rele-

vance and importance of this research:

1. Advancing Domain Adaptation in GANs: The first two papers, HyperDomain-

Net and StyleDomain, make substantial contributions to the field of domain adapta-

tion for GANs. With an increasing need to adapt GAN models to specific domains

with limited data, these papers propose efficient and lightweight parameterizations.

This research enables the practical use of GANs in scenarios where data scarcity is

a critical concern, extending their applicability in real-world settings.

2. Reduction in Computational Resources: The HyperDomainNet and HiFi++

papers emphasize the importance of reducing computational resources while main-

taining or improving the quality of generated content. Given that computational

efficiency is a critical factor in deploying GANs in resource-constrained environ-
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ments, this research contributes to making GAN-based models more accessible and

cost-effective. It aligns with the current trend in AI research toward optimizing deep

learning models for practical deployment.

3. Universal Applicability: The development of HyperDomainNet, which can adapt

to multiple domains with a single model, is particularly relevant in the era of data-

driven AI. In many practical scenarios, maintaining distinct models for various do-

mains is challenging, making the idea of universal adaptation highly appealing. The

capability of a single model to generalize and adapt to multiple domains is crucial

for efficient, flexible, and scalable AI systems.

4. Efficient Speech Enhancement: In the domain of speech enhancement, the

HiFi++ and FFC-SE papers introduce novel and effective architectures. The

HiFi++ paper demonstrates that GANs can outperform traditional methods for

bandwidth extension and speech enhancement, while having considerably fewer pa-

rameters and reduced computational complexity. Meanwhile, the FFC-SE paper

applies novel techniques to improve speech enhancement through Fast Fourier con-

volution, making the architecture even more lightweight and achieving better perfor-

mance in practice.

The goal of this work is to propose novel efficient parameterizations for GAN models

that allows us to significantly reduce the number of optimized parameters and the volume

of required training data.

2 Key results and conclusions

The main contributions of this study can be described as:

1. In HyperDomainNet paper, we proposed a new parametrization of StyleGAN

based on domain modulation techniques and a new HyperDomainNet model. Our

parametrization reduced the number of trained StyleGAN parameters by several

thousand times for domain adaptation, while achieving comparable quality as ex-

isting approaches that train almost all StyleGAN generator parameters. We also

introduced a new HyperDomainNet model that allows us to address the problem of

multi-domain adaptation, i.e., when we want to adapt StyleGAN to multiple domains

simultaneously. This gives new possibilities for cases where we have a lot of different
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domains that we want to train on and we don’t want to train a separate model for

each one. Our approach dramatically improves the efficiency and applicability of the

model for such cases.

2. In StyleDomain work, we analysed the StyleGAN domain adaptation task in more

depth. We investigated which parts of this model are important for adapting to

different domains depending on the similarity of the target domain to the source

domains. As a result of this analysis, we proposed new efficient parametrisations

of StyleSpace and Affine+. StyleSpace is the easiest parametrization to solve the

domain adaptation problem for close domains and achieves the same quality as other

approaches that train significantly more parameters. The Affine+ parametrization

is designed for more distant domains and performs the best in the few-shot learn-

ing task, while having fewer trained parameters than baselines. We also discovered

surprising properties of these parameterisations that can be used for even more ap-

plications.

3. In HiFi++ and FFC-SE papers, we proposed new efficient models for the speech

enchancement problem. In HiFi++, we presented new modules in the GAN generator

architecture that significantly improve the final quality of the model with very few

parameters. We have shown that with this architecture, the model performs on par

or even better than existing approaches with significantly fewer parameters. In FFC-

SE, the generator architecture was further improved by Fourier convolution, which

allowed more information to be considered and utilised. This reduced the size of the

model and improved the final quality.

Theoretical and practical significance. The theoretical significance of this work

lies in its novel approaches to parametrizing and adapting the StyleGAN architecture,

as well as advancing speech enhancement models. By introducing the HyperDomain-

Net and StyleDomain frameworks, the study presents methods for reducing the number

of trained parameters in StyleGAN for domain adaptation, achieving quality compara-

ble to existing approaches while having significantly less parameters. This includes new

parametrizations like StyleSpace and Affine+, which optimize adaptation for both close

and distant domains, revealing unexpected properties that broaden potential applications.

Practically, these advancements result in more efficient, multi-domain adaptable models,

enhancing their practical utility in scenarios with numerous diverse domains. Addition-
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ally, the HiFi++ and FFC-SE models propose new architectures for speech enhancement,

utilizing GAN modules and Fourier convolution to significantly improve model perfor-

mance with fewer parameters, thus contributing to more efficient and high-quality speech

processing solutions.

Methodology and research methods. In this work, we apply deep learning, gen-

erative models, generative adversarial networks, domain adaptation approaches, speech

enhancement, as well as standard optimization methods.

Reliability. Detailed descriptions of the proposed methods and experiments are pro-

vided, with the code for all papers released publicly.

Key aspects/ideas to be defended.

1. The domain modulation technique for efficient domain adaptation and HyperDomain-

Net for multi-domain adaptation training.

2. The efficient parametrizations, StyleSpace and Affine+, for StyleGAN domain adap-

tation in close and distant domain tasks.

3. The efficient speech enhancement models: HiFi++ that improves quality with min-

imal parameters and FFC-SE that enhances model performance using Fourier con-

volution.

Author contribution. The research presented in this thesis is the result of sev-

eral years of dedicated work and collaborative effort. This section describes the author’s

specific contributions to each of the four papers that make up this thesis. In the first

paper HyperDomainNet, the author proposed a domain modulation technique for efficient

domain adaptation of StyleGAN. The author was also responsible for implementing the

one-shot domain adaptation experiments and prepared the main body of text for all sec-

tions of the paper. In the second StyleDomain paper, the author proposed the StyleSpace

and Affine+ parameterisations and prepared the text for all sections of the paper except

the experiments section. In the HiFi++ paper, the author proposed the idea of using

several simple and lightweight discriminators, found the optimal size for each part of the

architecture, and was responsible for the experiments to find the best discriminator con-

figuration. In addition, the author played a significant role in writing the text of the

introduction and the main sections of the paper. In the fourth paper FFC-SE, the author

was involved in writing the code base and the design of the experiments. The author was
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also involved in editing the text of the paper and participated in discussions regarding

the analysis of the results obtained.

Publications and probation of the work

First-tier publications

* denotes equal contribution of coauthors

1. Aibek Alanov*, Vadim Titov*, and Dmitry Vetrov. HyperDomainNet: Universal

Domain Adaptation for Generative Adversarial Networks. // In Advances in Neural

Information Processing Systems, 2022 (NeurIPS 2022). Vol. 35, pages 29414–29426.

CORE A* conference.

2. Aibek Alanov*, Vadim Titov*, Maksim Nakhodnov*, and Dmitry Vetrov. StyleDo-

main: Efficient and Lightweight Parameterizations of StyleGAN for One-shot and

Few-shot Domain Adaptation. // In International Conference on Computer Vision,

2023 (ICCV 2023). Pages 2184-2194. CORE A* conference.

3. Ivan Shchekotov*, Pavel Andreev*, Oleg Ivanov, Aibek Alanov, and Dmitry Vetrov.

FFC-SE: Fast Fourier Convolution for Speech Enhancement. // In InterSpeech Con-

ference, 2022. Pages 1188-1192. CORE A conference.

Second-Tier Publications

1. Pavel Andreev*, Aibek Alanov*, Oleg Ivanov*, and Dmitry Vetrov. HiFi++: a

Unified Framework for Bandwidth Extension and Speech Enhancement. // In In-

ternational Conference on Acoustics, Speech, and Signal Processing, 2023 (ICASSP

2023). Pages 1-5. CORE B conference (according to CORE2018).

Reports at Conferences and Seminars

1. Talk on “Audio Synthesis and Bandwidth Extension”, Seminar of Bayesian methods

research group, Moscow, April 2021.

2. Poster presentation on “FFC-SE: Fast Fourier Convolution for Speech Enhance-

ment.”, InterSpeech Conference, Seoul, Republic of Korea, September 2022.

3. Poster presentation on “HyperDomainNet: Universal Domain Adaptation for Gener-

ative Adversarial Networks”, Conference on Neural Information Processing Systems,

New Orleans, USA, December 2022.
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4. Talk on “Domain Adaptation of GANs”, Seminar of Bayesian methods research group,

Moscow, December 2022.

5. Talk on “HyperDomainNet: Universal Domain Adaptation for Generative Adversarial

Networks”, Conference Fall into ML, Moscow, November 2022.

6. Talk on “HyperDomainNet: Universal Domain Adaptation for Generative Adversarial

Networks”, Seminar AIRI AIschnitsa, Moscow, December 2022.

7. Talk on “HyperDomainNet: Universal Domain Adaptation for Generative Adversarial

Networks”, Conference of the Faculty of Computer Science, Voronovo, June 2022.

Volume and structure of the work. The thesis contains an introduction, contents

of publications and a conclusion. The full volume of the thesis is 142 pages.

3 Content of the work

3.1 HyperDomainNet: Universal Domain Adaptation for Generative Adver-

sarial Networks

In the field of computer vision, Generative Adversarial Networks (GANs) [1, 2, 3, 4, 5]

have shown remarkable performance in various tasks like image enhancement [6, 7], editing

[8, 9], and image-to-image translation [10, 11, 12]. However, training modern GANs

requires a large number of samples, limiting their application to domains with abundant

image data. To overcome this limitation, transfer learning (TL) is commonly used, where

a pre-trained model is fine-tuned for a new domain with limited data.

Current GAN TL methods typically fine-tune almost all weights of the pre-trained

model [19, 20, 21, 22, 4, 23, 24, 25, 26]. While this is suitable for distant target domains,

it’s often unnecessary for domains similar to the source. In such cases, fine-tuning all

weights seems redundant. This study introduces a more efficient approach called domain-

modulation, which optimizes only a single 6,000-dimensional vector for each target domain,

significantly reducing the parameter space compared to traditional fine-tuning of all 30

million weights.

The domain-modulation technique is applied to two state-of-the-art domain adapta-

tion methods, StyleGAN-NADA [25] and MindTheGAP [26], demonstrating comparable
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performance to full parameterization while being much more lightweight. Additionally, a

new regularization loss is proposed to enhance the diversity of the fine-tuned generator.

The study also addresses multi-domain adaptation, where a single model adapts to mul-

tiple domains based on input text descriptions or image examples. Instead of fine-tuning

separate generators for each target domain, a hyper-network named HyperDomainNet is

introduced. This hyper-network predicts the vector for StyleGAN2 based on the target

domain, significantly reducing training time and the number of trainable parameters. It

is observed that this approach can generalize to unseen domains if a sufficient number of

domains are used for training.

The research presents extensive experiments to validate the proposed techniques across

various domains. The results show that domain-modulation achieves quality comparable

to full parameterization, and the regularization loss improves the fine-tuned generator’s

diversity. Additionally, the HyperDomainNet demonstrates promising generalization to

diverse unseen domains.

In summary, this work offers three key contributions:

1. A domain-modulation technique that reduces the parameter space for domain adap-

tation in StyleGAN2 by several orders of magnitude.

2. A novel regularization loss to enhance the diversity of fine-tuned generators.

3. The introduction of a HyperDomainNet for multi-domain adaptation, showcasing

generalization to unseen domains.

Background

StyleGAN2 [3] generates images through a mapping network M(z) that transforms initial

random vectors z ∈ Z into an intermediate latent space W , which is then passed through

affine transformations A(w) to create style parameters s = A(w) ∈ S. These parameters

influence the final feature maps produced by a synthesis network Gsys. ToRGB layers

GtRGB are used to generate the output image.

Domain Adaptation Problem: Adapting a trained StyleGAN2 generator from one do-

main (source) to another (target), guided by either an image or text description from the

target domain.

CLIP Model [27]: CLIP is a model that aligns text and image embeddings in a shared

space, measuring the semantic similarity of objects based on cosine distance.
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CLIP-based 
Loss Function

Mapping

Finetuned StyleGAN2

Pretrained StyleGAN2

ModConv   ModulatedConv

Conv 3x3Demod

Dom Mod

Weights

Mod
Affine

(a) Domain-modulation technique (b) Fine-tuning StyleGAN2 by optimizing the domain vector D

ModConv

ModConv

ModConv

Figure 1: Detailed diagram of proposed method. (a) Revised ModulatedConv block with introduced

domain-modulation operation. (b) Fully detailed training process of the domain adaptation with the

proposed domain-modulation technique.

StyleGAN-NADA [25]: This method uses CLIP to align source and target domains in

the CLIP space. It optimizes the synthesis network of the target domain using a direction

loss between images and text descriptions.

MindTheGap [26]: Designed for one-shot domain adaptation, MindTheGap aims to

prevent the loss of diversity in target images. It introduces a direction loss that uses the

embedding of the target image in the source domain, improving adaptation quality.

In summary, these methods adapt StyleGAN2 to new domains using CLIP-based align-

ment techniques, improving the quality of synthesized images.

Approach

The study aims to enhance StyleGAN domain adaptation by optimizing the synthesis

network Gsys(·, ·) using a compact parameter space. This network component is primar-

ily altered during domain fine-tuning. The approach introduces domain modulation, an

operation that refines feature convolution weights within the synthesis network. Mod-

ulation adjusts weights based on style parameters, leading to a more efficient form of

adaptive instance normalization (AdaIN) [28, 29]. This technique is inspired by style

transfer methods using AdaIN for image translation.

The domain modulation method reduces the parameter space for fine-tuning Style-

GAN2 by optimizing only a vector d with the same dimension as the style parameters.

This vector is incorporated into the StyleGAN architecture through an additional modula-
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tion operation (see Figure 1a). Instead of optimizing all weights θ of the Gsys component,

only the d vector is trained. This dimension of the vector d equals 6 thousand that is 4

thousand times less than the original 30 million weights space θ of Gsys(·, ·) part.

Improving Diversity of CLIP-Guided Domain Adaptation

Existing CLIP-based domain adaptation methods, StyleGAN-NADA and MindTheGap,

employ Ldirection (or Lclip_across) loss to address mode collapsing issues. However, this loss

partially preserves diversity and collapses after some iterations, particularly problematic

for domains requiring extensive fine-tuning. The issue with Ldirection is that it calculates

cosine distances between embeddings that no longer lie on the CLIP sphere, contributing

to mode collapse.

To tackle this, a new regularizer called indomain angle consistency loss is introduced.

This loss computes CLIP cosine distances exclusively between CLIP embeddings. It aims

to maintain pairwise cosine distances between images before and after domain adaptation,

effectively enhancing generator diversity compared to the original loss functions:

Lindomain−angle({GB
d (wi)}ni=1, {GA(wi)}ni=1, B,A) = (1)

=
n∑
i,j

(⟨EI(G
A(wi)), EI(G

A(wj))⟩ − ⟨EI(G
B
d (wi)), EI(G

B
d (wj))⟩)2, (2)

Designing the HyperDomainNet for Universal Domain Adaptation

We propose a domain-modulation technique for efficient multi-domain adaptation of Style-

GAN2. Our goal is to train the HyperDomainNet, which predicts domain parameters for

fine-tuning generators. Specifically, we focus on the scenario where target domains are

represented by text descriptions.

The HyperDomainNet takes text embeddings as input and outputs domain parameters.

We use a combination of loss functions, including Ldirection, Ltt−direction and Ldomain−norm ,

to train the network. These losses ensure that the predicted domain parameters effectively

guide domain adaptation and prevent domain mixing. The training process is described

in the Figure 2.

In summary, we introduce a domain-modulation approach for multi-domain adaptation

in StyleGAN2, focusing on text-based target domains. The HyperDomainNet is trained

with a set of loss functions to enable effective domain-specific fine-tuning. For detailed

descriptions of the losses and optimization process, please see the original paper.
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Figure 2: Detailed training process of the HyperDomainNet. On the training phase only reference

descriptions are included into CLIP-guided training.

Results

This section presents results for text-based, one-shot, and multi-domain adaptation using

our proposed approach.

Text-Based Domain Adaptation We compare our parameterization with StyleGAN-

NADA [25] on diverse domains. Our parameterization matches the expressiveness of

StyleGAN-NADA, enabling adaptation to style and texture changes. Qualitative results

are in Figure 3, demonstrating comparable performance.

One-Shot Domain Adaptation We apply our parameterization and the indomain angle

consistency loss to the MindTheGap [26] method. Results in Table 1 and in Figure 4

show our approach achieves similar performance to the original, with significantly fewer

parameters. TargetCLIP [30] and other methods exhibit poor adaptation quality, mainly

suitable for in-domain editing. Indomain angle consistency significantly improves FID

and precision metrics.

Multi-Domain Adaptation We use the HyperDomainNet in two scenarios: (i) fixed num-

ber of domains and (ii) arbitrary number of domains. Results in Figure 5 reveal the

effectiveness of our method in both scenarios, with promising adaptation to unseen do-

mains. Ablation study supports the importance of the proposed losses in training the

HyperDomainNet for multi-domain adaptation.

12



StyleGAN-NADA Ours

Anime
Painting

Mona Lisa
Painting
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Figure 3: Comparison with the original StyleGAN-NADA [25] method (left) and its version with our

parameterization.

MTG (+indomain) Ours StyleGAN-NADA

Figure 4: Comparison with one-shot domain adaptation methods. Left block is MindTheGap+indomain

and right block is StyleGAN-NADA [26]. The middle block is the MindTheGap+indomain with our

parameterization.
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3.2 StyleDomain: Efficient and Lightweight Parameterizations of StyleGAN

for One-shot and Few-shot Domain Adaptation

Recent advancements in Generative Adversarial Networks (GANs) [1, 2, 3, 31, 5], partic-

ularly StyleGAN models, have proven highly effective in various image synthesis appli-

cations, including image enhancement, editing, and translation. However, training Style-

GAN models demands large, high-quality datasets, limiting their usefulness in domains

with few images. Transfer learning, fine-tuning a pretrained model from one domain to

another, is a common approach to tackle this issue.

Several domain adaptation methods for StyleGAN exist [4, 32, 23, 33, 34, 35, 24, 36,

15, 25, 26, 37], but most assume that adapting to a new domain requires fine-tuning most

model weights, even for similar domains. This assumption lacks empirical validation, and

little analysis has been conducted on which parts of StyleGAN are crucial for different

data scenarios and domain similarities.

In this study, we conduct a systematic analysis to address this issue. Our investigation

has two main parts. First, we identify what parts of StyleGAN need adaptation depend-

ing on the similarity between the source and target domains. We find that, for similar

domains, fine-tuning only the affine layers is often sufficient. For more dissimilar domains,

we need to optimize additional parameters, but not necessarily the entire network. This

suggests the potential for more efficient and lightweight parameterizations of StyleGAN

for domain adaptation.

Table 1: Evaluation of one-shot adaptation methods. Results for TargetCLIP, Cross-correspondence and

StyleGAN-NADA methods are taken from [26].

Model quality Model complexity

Model FID Precision Recall # trainable parameters

TargetCLIP [30] 199.33 0.000 0.293 9K

Cross-correspondence [24] 158.86 0.001 0 30M

StyleGAN-NADA [25] 124.55 0.118 0 24M

MindTheGap [26] 78.35 0.326 0.017 24M

MindTheGap (our param.) 79.83 0.452 0.017 6k

MindTheGap+indomain 71.46 0.503 0.014 24M

MindTheGap+indomain (our param.) 72.71 0.472 0.028 6k
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Figure 5: Comparison of training setups. The top row represents the real images embedded into Style-

GAN2 latent space which latents are then used for HyperDomainNet inference. The left block represents

results obtained from text-descriptions presented in the train list. The right block represents results of

HyperDomainNet inference on unseen text-descriptions.

In the second part of our analysis, we propose two new parameterizations of StyleGAN.

For similar domains, we introduce the concept of StyleSpace, where we can optimize di-

rections to adapt to similar target domains without fine-tuning all StyleGAN weights.

For more distant domains, we present the Affine+ parameterization, which significantly

reduces the number of trainable parameters while maintaining quality. Further improve-

ments are made with the AffineLight+ parameterization, which utilizes low-rank decom-

position for affine layer weights. These parameterizations outperform complex baselines

in few-shot adaptation for dissimilar domains.

Moreover, we explore the properties of StyleDomain directions, discovering their mix-

ability and transferability. These directions can be combined to create entirely new styles

or applied to StyleGAN models fine-tuned for other domains. We leverage these findings

in various computer vision tasks, including image-to-image translation and cross-domain

morphing.
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Importance of Each Part of the StyleGAN

In this section, we assess the importance of various components of StyleGAN, particularly

StyleGAN2, for domain adaptation. The source domain is FFHQ, and we explore different

target domains. StyleGAN2 consists of three primary components:

• Mapping Network: It transforms input noise into an intermediate latent vector.

• Affine Layers: These layers map the latent vector to style vectors, which form the

StyleSpace.

• Synthesis Network: Composed of modulated convolutions, it generates the output

image from the input noise.

We provide a diagram description of the StyleGAN2 architecture in Figure 6.

Mapping

Const 
Input

Mod 
Conv

Affine Affine Affine

Mod 
Conv

Synthesis Network

Affine Layers

Mapping Network 

Mod 
Conv

Affine + ConvBlock 

Weight Offsets 

Figure 6: StyleGAN2 architecture. We introduce new latent space S+ for the for domain adaptation

that combines StyleSpace and weight offsets for one block from the synthesis network.

The synthesis network has been traditionally considered the most critical for adapta-

tion, while the mapping network and affine layers primarily handle semantic manipulations

within the source domain. We aim to validate this assumption.

In our experiments, we also examine the combined impact of affine layers and a convo-

lutional block from the synthesis network on domain adaptation, offering an intermediate

analysis.

We propose a method to analyze each component’s impact. While previous work reset

the fine-tuned generator’s component weights to their pretrained values, we suggest fine-

tuning only one component to determine which is sufficient for domain adaptation.
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The optimization objective for domain adaptation is to minimize the domain adap-

tation loss, LD, using generated samples from the generator Gθ(s(z)). Typically, the

generator is optimized with respect to all components:

LD

(
{Gθ(s(zi))}Ki=1

)
→ min

θ,fA,fM
. (3)

We explore settings where we optimize with respect to only one component: SyntConv

for synthesis network, Affine for affine layers, and Mapping for the mapping network. The

full optimization of all components is termed Full parameterization.

We consider two domain adaptation settings: one-shot and few-shot. For each setting,

we use different domains that vary in similarity to the source domain (FFHQ). One-shot

domains maintain face geometry and identity while altering the style. Few-shot domains,

on the other hand, change the face form, geometry, and identity more drastically. Different

domain loss functions are applied depending on the data regime.

In the case of one-shot adaptation, we utilize Quality and Diversity metrics. For

few-shot adaptation, we compute the FID metric. Further details about the domain

adaptation loss functions can be found in the appendix.

Analysis for one-shot domains.

In our analysis, we explore text-based and one-shot image-based domains.

In our experiments, we examine four parameterizations: Full, SyntConv, Affine, and

Mapping. Our qualitative results are presented in Figure Figure 7.

Fernando
Botero

Original Style Full SyntConv Affine Mapping StyleSpace
StyleSpace
Sparse

Figure 7: Text-based and image-based adaptation for different parameterizations. Affine, StyleSpace and

StyleSpaceSparse parameterizations yield performance comparable with Full one. This style image is

called "Disney".
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We find that Full, SyntConv, and Affine parameterizations perform similarly in terms

of visual quality and objective metrics. This aligns with prior research [37]. Surprisingly,

the Affine parameterization alone is also effective, allowing us to change image domains

without retraining the synthesis network. However, the Mapping network exhibits poor

visual quality and limited diversity in generated images, emphasizing the importance of

updating the style vector from S for successful adaptation rather than the intermediate

latent vector from W .

Analysis for few-shot domains.

In this study, we analyze two datasets, AFHQ Dogs and Cats [38]. Results are pre-

sented in Figure Figure 8 and Table Table 2. We find differences in results for Dogs

and Cats compared to similar domains. Specifically, the Affine parameterization yields

lower quality, evident in degraded visual output and increased FID metric. Surprisingly,

even without fine-tuning, the adapted images exhibit reasonable visual quality. SyntConv

matches Full parameterization in results, while Mapping yields consistently poor quality

across all datasets.

StyleSpace and StyleSpaceSparse.

The study explores modifying the style vector in StyleSpace S to alter the generated

image domain. The authors optimize the direction ∆sD during fine-tuning of StyleGAN2

to achieve this change. They call these optimized directions "StyleDomain" directions:

LD

(
{Gθ(s(zi) + ∆s)}Ki=1

)
→ min

∆s
, (4)

Ca
t

Full SyntConv Affine Mapping Affine+ AffineLight+ StyleSpace

D
og

Figure 8: Domain adaptation for dissimilar domains. Affine+ parameterization produces results on par

with the Full one.
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where ∆s = (∆s1, . . . ,∆sN) ∈ S is the optimized direction in the S for adapting the

generator Gθ to the domain D.

They find that it’s possible to prune most coordinates of StyleDomain directions with-

out degrading quality. They use a standard pruning technique, retaining the top 20% of

largest absolute values and setting the rest to zero, which they refer to as "StyleSpaceS-

parse."

The authors apply these parameterizations to one-shot and few-shot domains and make

the following observations:

For one-shot adaptation, optimizing the StyleDomain direction achieves the same re-

sults as the Full parameterization, both visually and quantitatively. This allows generating

samples from out-of-domain regions of realistic human faces.

For few-shot domains, StyleSpace is insufficient, resulting in significant quality degra-

dation. They introduce a new parameterization suitable for more distant domains.

Affine+ and AffineLight+.

We propose improving Affine parameterization for domain adaptation in image synthesis,

specifically for Dogs and Cats. We introduce a compact parameterization for certain

layers by using offsets instead of fine-tuning all weights. The optimization objective is to

minimize a loss function for this parameterization. We call this space "Affine+," which is

chosen for a specific block in the synthesis network with a 64x64 resolution, as it performs

Table 2: FID scores for domain adaptation with different parameterizations. We observe a significant

gap between Affine and Full parametrizations that, however, can be drastically reduced by introducing

Affine+ parameterization.

Domains

Parameter Space Size Dog Cat

Full 30.3M 20.3 7.1

SyntConv 23.6M 19.7 7.2

Affine 4.6M 70.1 27.6

Mapping 2.1M 208.2 226.1

Affine+ 5.1M 18.6 7.0

AffineLight+ 0.6M 20.6 8.9

StyleSpace 6.0K 75.8 22.0
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the best. So, for this parameterization the optimization procedure has the following form:

LD

(
{Gθ,∆θ1,∆θ2(s(zi))}

K
i=1

)
→ min

∆θ1,∆θ2,fA
, (5)

where G∆θ1,∆θ2 is the generator with weight offsets ∆θ1,∆θ2 for the one block from the

synthesis network.

Affine+ already has significantly fewer parameters than Full parameterization. We

further reduce its size using low-rank decomposition and name it "AffineLight+." It has

far fewer parameters while maintaining good quality, especially in low-data scenarios.

We apply these two parameterizations to few-shot domains and achieve promising

results. For more details and results, refer to the provided figures and tables. Affine+

narrows the performance gap with the Full parameterization, indicating that style vectors

help adapt the generator even to distant domains. AffineLight+ performs well with a

much smaller parameter count, making it suitable for low-data situations.

Properties of the StyleDomain directions.

We explore two notable features of StyleDomain directions. First, they exhibit mixabil-

ity, enabling the combination of directions corresponding to different similar domains,

resulting in semantically mixed adaptation (see Figure 10 for examples).

Second, StyleDomain directions are transferable between different StyleGAN2 models.

This is demonstrated by applying directions optimized for a base generator Gθ to adapt

fine-tuned generators in various domains (e.g., Dogs, Cats) (see Figure 9 for results).

Results.

One-shot domain adaptation. This study explores one-shot domain adaptation for

image-based tasks, using various baselines, such as TargetCLIP, JoJoGAN, MTG, GOSA,

DiFa, and DomMod. StyleSpace and StyleSpaceSparse parameterizations are applied to

the DiFa model, yielding improved performance. The experiments utilize StyleGAN2

with the source domain FFHQ, maintaining baseline configurations for fair comparison.

A variety of style images serve as target domains. Quantitative and qualitative results

are provided in Table 3 and in Figure 11, indicating that DiFa achieves the best Quality

metric but lacks Diversity. The proposed parameterizations enhance performance across

these metrics, outperforming other baselines. DomMod also performs well but is compa-

rable to StyleSpaceSparse, which is more parameter-efficient. Notably, StyleSpaceSparse
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demands significantly less memory, which is crucial for scaling to numerous target do-

mains. TargetCLIP, despite its limited trainable parameters, delivers poor visual and

quality results. User studies are presented for a comprehensive evaluation.

Few-shot domain adaptation. In the context of few-shot domain adaptation, the

study compares parameterizations (Affine+ and AffineLight+) applied to the vanilla

StyleGAN-ADA with ADA, CDC, and AdAM baselines using the Dogs and Cats dataset.

Original Sketch
Fernando
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Anime
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FF
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Figure 9: StyleSpace directions transfer from text-based and image-based domain adaptation to other

fine-tuned models. We can successfully transfer style while preserving image content.

original + +
the Joker

+
Pixar

3D Render

Figure 10: Example of mixing StyleDomain directions. We can combine different directions in order to

perform adaptation into a semantically mixed domain.
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Table 3: Quality and Diversity metrics [15] for one-shot image-based domain adaptations with different

methods. Memory denotes the memory needed for keeping adapted generators for all 12 domains for

each method. StyleSpace and StyleSpaceSparse parameterizations achieve results comparable to other

baselines while having much less trainable parameters.

Titan Erwin Disney Across 12 domains

Method Size Memory Quality Diversity Quality Diversity Quality Diversity

JoJoGAN [39] 30M 1.80GB 0.572 0.292 0.591 0.260 0.590± 0.048 0.257± 0.025

MTG [26] 30M 1.80GB 0.607 0.269 0.509 0.234 0.586± 0.054 0.263± 0.028

GOSA [40] 30M 1.80GB 0.547 0.283 0.617 0.216 0.584± 0.034 0.252± 0.030

DiFa [41] 30M 1.80GB 0.719 0.226 0.699 0.263 0.734± 0.047 0.215± 0.038

TargetCLIP [30] 9.0K 420KB 0.474 0.306 0.502 0.333 0.491± 0.043 0.322± 0.015

DomMod (DiFa) [15] 6.0K 280KB 0.705 0.250 0.625 0.294 0.679± 0.049 0.253± 0.037

StyleSpace (DiFa) 6.0K 280KB 0.672 0.296 0.627 0.308 0.644± 0.041 0.298± 0.025

StyleSpaceSparse (DiFa) 1.2K 56.4KB 0.659 0.303 0.617 0.304 0.638± 0.046 0.299± 0.026

Original
Style
Image TargetCLIP JoJo MTG GOSA DiFA

DomMod
(DiFa)

StyleSpace
(DiFa)

StyleSpace
Sparse
(DiFa)

Figure 11: Comparison with baselines for one-shot image-based domain adaptation. StyleSpace and

StyleSpaceSparse parameterizations achieve comparable quality as other methods while having much less

trainable parameters.

The efficiency of these methods is assessed with varying numbers of target samples, and

rigorous training setups are followed. The results are provided in Figure 12 and in Table 4.

Notably, training iterations are increased to 50K for all methods to prevent underfitting.

Results show that AdAM’s performance is not superior to the vanilla ADA when suffi-

ciently trained. ADA (Affine+) and ADA (AffineLight+), enhanced with the proposed

parameterizations, consistently outperform other methods across different numbers of

shots, especially in low-data scenarios.
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Figure 12: Few-shot training results for different number of shots. Proposed ADA (Affine+) and ADA

(AffineLight+) show uniformly better performance than baselines.

Table 4: Results for few-shot training with 10-shots. Proposed ADA (Affine+) and ADA (AffineLight+)

achieve better performance.

Domains (10-shots)

Method Size Cat Dog

CDC [24] 30M 66.24 184.56

AdAM [42] 19M 47.05 119.61

ADA (Full) [4] 30M 51.38 100.25

ADA (Affine+) 5.1M 38.40 96.38

ADA (AffineLight+) 0.6M 43.91 101.31

3.3 HiFi++: a Unified Framework for Bandwidth Extension and Speech

Enhancement

The issue of conditional speech generation holds significant practical importance, en-

compassing applications such as neural vocoding, bandwidth extension (BWE), speech

enhancement (SE), and more. A recent breakthrough in this field leverages generative

adversarial networks (GANs) [13, 14]. Specifically, it has been shown that GAN-based

vocoders outperform publicly available neural vocoders in speech quality and speed.

In this study, we adapt the HiFi model [14] for bandwidth extension and speech en-

hancement tasks by introducing a novel HiFi++ generator architecture. This architecture

incorporates new components, including spectral preprocessing (SpectralUnet), a convo-

lutional encoder-decoder network (WaveUNet), and learnable spectral masking (Spectral-
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MaskNet). These enhancements enable our generator to effectively address bandwidth

extension and speech enhancement challenges.

Our extensive experiments reveal that our model performs competitively with state-of-

the-art solutions in bandwidth extension and speech enhancement, all while being notably

more lightweight and maintaining superior or equivalent quality.

Adapting HiFi-GAN Generator For Bandwidth Extension and Speech Enhancement.

This paper introduces the HiFi++ architecture, which extends the HiFi generator to ad-

dress the SE and BWE problems by incorporating three novel modules: SpectralUNet,

WaveUNet, and SpectralMaskNet (see Figure 13). The HiFi++ generator is based on

the HiFi-GAN generator’s V2 version, taking an enriched mel-spectrogram as input from

SpectralUNet and undergoing post-processing via WaveUNet and SpectralMaskNet. Re-

ordering these post-processing modules did not yield significant improvements.

Upsampler 
(HiFi-like) WaveUNet SpectralMaskNetSpectralUNet

z

Waveform 
 

Mel-spectrogram 

Output waveform

Discriminator
Discriminator
Discriminators

STFT and mel-
scale

Mel-spectrogram
loss

Adversarial and
feature matching

losses

Final loss

Channel-
wise STFT

Amplitudes

SpectralUnet

Phases

Softplus Multiply
Inverse

channel-wise
STFT

UNet architecture with 2d convolutions
UNet architecture with 1d

convolutions

WaveUNetSpectralUNet SpectralMaskNet

STFT and mel-scale Concatenation 

487.8k 891.5k 238.2k 102.5k

Figure 13: HiFi++ architecture and training pipeline. The HiFi++ generator consists of the HiFi-like

Upsampler and three introduced modules SpectralUNet, WaveUNet and SpectralMaskNet (their sizes are

in yellow boxes). The generator’s architecture is identical for BWE and SE.

SpectralUNet: The SpectralUNet module serves as the initial stage of the HiFi++

generator. It enhances the resolution of the mel-spectrogram, a 2D representation of the

raw waveform, to simplify the subsequent transformation into a 1D sequence. This UNet-

like architecture employs 2D convolutions and acts as a preprocessing step, extracting

essential information for the target task, particularly beneficial for bandwidth extension

and speech enhancement.

WaveUNet: Positioned after the HiFi’s Upsampler, the WaveUNet module takes mul-

tiple 1D sequences concatenated with the input waveform. It operates in the time do-

24



main, enhancing the Upsampler’s output and merging the predicted waveform with the

source. WaveUNet adopts the Wave-U-Net architecture, a fully convolutional 1D-UNet-

like network, resulting in a 2D tensor of m 1D sequences, which are further processed by

SpectralMaskNet.

SpectralMaskNet: As the final part of the generator, SpectralMaskNet introduces

learnable spectral masking. It takes the 2D tensor of m 1D sequences, applies channel-

wise short-time Fourier transform (STFT), and predicts multiplicative factors for the

amplitudes, followed by inverse STFT to modify the spectrum. This frequency-domain

post-processing mechanism effectively removes artifacts and noise from the output wave-

form in a learnable manner.

Training Objective: The paper employs a multi-discriminator adversarial training

framework, inspired by [14] work. Instead of using multi-period and multi-scale dis-

criminators, we utilize several identical discriminators operating on the same resolutions

with fewer weights. The losses used in training include LS-GAN loss, feature matching

loss, and mel-spectrogram loss:

L(θ) = LGAN(θ) + λfmLFM(θ) + λmelLMel(θ) (6)

L(φi) = LGAN(φi), i = 1, . . . , k. (7)

The total loss for the generator incorporates these losses with associated weights, while

each discriminator is optimized individually. Experiments set the weights as follows:

λfm = 2, λmel = 45, and the number of discriminators k = 3.

Results.

Bandwidth Extension: We utilized the VCTK dataset, comprising 44,200 speech

recordings from 110 speakers, for bandwidth extension experiments. Six speakers were

excluded from the training set to prevent data leakage. The evaluation used 48 utterances

from these excluded speakers. Importantly, the text in the evaluation utterances was not

present in the training data.

Speech Denoising: Our denoising experiments employed the VCTK-DEMAND

dataset, featuring 11,572 training utterances with various signal-to-noise ratios (SNR)

and 824 test utterances. Further details can be found in the original paper.
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Evaluation

Objective Evaluation: We assessed speech enhancement using conventional metrics

such as WB-PESQ, STOI, SI-SDR, and DNSMOS. Additionally, we introduced WV-

MOS, a direct MOS score prediction based on fine-tuned wave2vec2.0, which exhibited

better correlation with subjective quality measures.

Subjective Evaluation: Subjective quality assessment was conducted using 5-scale

MOS tests, with audio clips normalized to account for volume differences. English-

speaking referees with suitable listening equipment participated.

Bandwidth Extension

In bandwidth extension experiments, we trained models independently for three input

frequency bandwidths (1 kHz, 2 kHz, and 4 kHz). As we observe in Table 5, HiFi++

outperformed other techniques in terms of model size and quality of bandwidth exten-

sion, being five times smaller than the closest baseline, SEANet. Pair-wise comparisons

confirmed HiFi++’s statistical dominance over SEANet.

These results underscore the importance of adversarial objectives in speech frequency

bandwidth extension models. Notably, SEANet, which also employs adversarial objec-

tives, emerged as the strongest baseline among the examined models, leaving supervised

reconstruction models like TFilm and 2S-BWE far behind, particularly for low input

frequency bandwidths.

Table 5: Bandwidth extension results on VCTK dataset. * indicates re-implementation.

BWE (1kHz) BWE (2kHz) BWE (4kHz)

Model MOS
WV-

MOS
STOI PESQ MOS

WV-

MOS
STOI PESQ MOS

WV-

MOS
STOI PESQ

# Param

(M)

# MACs

(G)

Ground truth 4.62± 0.06 4.17 1.00 4.64 4.63± 0.03 4.17 1.00 4.64 4.50± 0.04 4.17 1.00 4.64 - -

HiFi++ (ours) 4.10± 0.05 3.71 0.86 1.74 4.44± 0.02 3.95 0.94 2.54 4.51± 0.02 4.16 1.00 3.74 1.7 2.8

SEANet 3.94± 0.09 3.66 0.82 1.54 4.43± 0.05 3.95 0.93 2.43 4.45± 0.04 4.17 0.99 3.65 9.2 4.5

VoiceFixer 3.04± 0.08 3.21 0.73 1.44 3.82± 0.06 3.50 0.78 1.73 4.34± 0.03 3.77 0.83 2.38 122.1 34.4

TFiLM 1.98± 0.02 1.65 0.81 2.11 2.67± 0.04 2.27 0.91 2.63 3.54± 0.04 3.49 1.00 3.52 68.2 -

input 1.87± 0.08 0.39 0.78 2.60 2.46± 0.04 1.74 0.88 3.04 3.36± 0.06 3.17 0.99 3.65 - -

Speech Enhancement

We see in Table 6 that comparing HiFi++ with baselines in speech enhancement, our

model achieved similar performance to state-of-the-art models like VoiceFixer and DB-

26



AIAT while being significantly more computationally efficient. VoiceFixer excelled in

subjective quality despite lagging behind in objective metrics, primarily due to its uti-

lization of mel-spectrograms rather than raw signal waveforms. HiFi++, which uses the

signal spectrum, outperformed SEANet, a model with a similar adversarial approach but

lacking spectral information.

An intriguing observation was the performance of the MetriGAN+ model, explicitly

trained to optimize PESQ, but not translating this success to other objective and subjec-

tive metrics.

Table 6: Speech denoising results on Voicebank-DEMAND dataset. * indicates re-implementation.

Model MOS WV-MOS SI-SDR STOI PESQ DNSMOS
# Par

(M)

# MACs

(G)

Ground truth 4.46± 0.05 4.50 - 1.00 4.64 3.15 - -

DB-AIAT 4.40± 0.05 4.38 19.4 0.96 3.27 3.18 2.8 41.8

HiFi++ (ours) 4.31± 0.05 4.36 17.9 0.95 2.90 3.10 1.7 2.8

VoiceFixer 4.21± 0.06 4.14 -18.5 0.89 2.38 3.13 122.1 34.4

DEMUCS 4.17± 0.06 4.37 18.5 0.95 3.03 3.14 60.8 38.1

MetricGAN+ 3.98± 0.06 3.90 8.5 0.93 3.13 2.95 2.7 28.5

Input 3.45± 0.07 2.99 8.4 0.92 1.97 2.53 - -

3.4 FFC-SE: Fast Fourier Convolution for Speech Enhancement

Speech enhancement plays a crucial role in telecommunication and has garnered significant

attention within the audio processing community. Traditional signal processing methods

have addressed this challenge but often rely on specific noise models. In recent years,

data-driven approaches, leveraging deep learning, have emerged as dominant in modern

speech enhancement.

A prevalent approach in deep learning for speech enhancement involves time domain

signal retrieval, employing a convolutional encoder-decoder (CED) structure. Notable

works, such as [43] and [44], utilize adversarial training and CED networks. Some also

incorporate neural components, such as long short-term memory cells [45] and transform-

ers [46]. These methods directly map noisy waveforms to clean signals, but often neglect

information about the signal spectrum, leading to potential inefficiencies. A recent en-
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deavor seeks to explicitly incorporate spectral information during generation, yielding

state-of-the-art results.

Another research strand focuses on short-time Fourier transform (STFT) representa-

tions. Approaches in this category aim to predict clean signal STFT coefficients directly

or correct noisy signal spectra using masks for magnitude or both magnitude and phase

modification [47]. Papers like MetricGAN and MetricGAN+ [48] employ Bidirectional

LSTM for predicting binary masks and report state-of-the-art results in speech quality

metrics. Estimating phases directly poses a challenge, leading to various strategies, in-

cluding decoupling magnitude and phase estimation [49] and employing separate vocoder

networks for waveform synthesis. These methods often necessitate large neural networks

and significant computational resources. To enhance phase prediction, we introduce non-

local neural operators, which reduce model size while improving quality.

We propose novel neural architectures based on the fast Fourier convolution (FFC)

operator, originally designed for computer vision tasks. FFC’s global receptive field is ad-

vantageous for complex spectrum prediction, particularly for handling periodic structures

in spectrograms. Our experiments reveal that FFC’s large receptive field aids in producing

coherent phases. Leveraging these insights, we design new neural architectures for direct

complex-valued spectrogram estimation in speech enhancement. These models achieve

state-of-the-art performance on VoiceBank-DEMAND [50] and Deep Noise Suppression

datasets with significantly fewer parameters than baseline methods.

Proposed Approach

We address the single-channel speech denoising problem, aiming to map noisy waveform

y = x + n with additive noise n to the clean signal x. Our strategy involves neural

architectures enhanced with a non-local neural operator called fast Fourier convolution

(FFC) [51], which we adapt for complex spectrum processing. We present two neural

architectures that incorporate this operator as a fundamental component.

Fast Fourier Convolution (FFC)

Fast Fourier convolution (FFC) is a neural operator enabling non-local reasoning within

a neural network. FFC applies channel-wise fast Fourier transform, followed by point-wise

convolution and inverse Fourier transform, globally influencing the input tensor across

dimensions involved in the Fourier transform. FFC divides channels into local and global

branches:
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1. The local branch employs conventional convolutions for local feature map updates.

2. The global branch conducts a Fourier transform of the feature map in the spectral

domain, affecting the global context.

In our work, we perform the Fourier transform solely across the frequency dimensions

of feature maps, corresponding to Short-Time Fourier Transform (STFT) representations,

in contrast to computer vision tasks where the Fourier transform spans both image di-

mensions [51, 52]. The global branch of the FFC layer consists of three steps:

1. Real fast Fourier transform across the frequency dimension of the input feature map,

followed by the concatenation of real and imaginary parts of the spectrum across the

channel dimension:

RC×F×T fft1d−→ CC×F/2×T concat−→ R2C×F/2×T . (8)

2. Application of a convolutional block with a 1× 1 kernel in the frequency domain:

R2C×F/2×T conv−bn−relu−→ R2C×F/2×T . (9)

3. Inverse Fourier transform:

R2C×F/2×T concat−→ CC×F/2×T ifft1d−→ RC×F×T . (10)

Here, C, F , and T represent the number of channels, the dimension corresponding to

frequency, and the dimension corresponding to time, respectively. The global and local

branches interact through activation summation. You can see the overall diagram of this

module in Figure 14.

We employ a variation of FFC from [52] for image inpainting, utilizing one-dimensional

Fourier transform across the frequency dimension.

FFC-AE

For speech enhancement, we implement two neural network architectures. The first,

FFC-AE, is inspired by [52]. FFC-AE comprises a convolutional encoder that downsam-

ples the input STFT representation across time and frequency dimensions by a factor of

two. Residual blocks follow the encoder, each composed of two sequential fast Fourier

convolution modules. The output of these blocks is upsampled by transposed convolution

and used to predict the real and imaginary parts of the denoised complex-valued spec-

trogram. The architecture is depicted in Figure 15 (left), and we refer to it as the fast

Fourier convolutional autoencoder (FFC-AE).
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Figure 14: Fast Fourier Convolution neural module for speech enhancement. Parameter α ∈ [0, 1] controls

the ratio of channels used in the global branch of the module.

We found that a downsampling factor of 2 strikes a suitable balance between perfor-

mance and computational complexity for STFT with a window size of 1024 and a hop

length of 256.

FFC-UNet

The second architecture draws inspiration from the classic U-Net model [53]. We in-

corporate FFC layers into the U-Net architecture, as shown in Figure 15 (right). At each

level of the U-Net structure, we integrate several residual FFC blocks with convolutional

upsampling or downsampling. We adapt the parameter α, representing the ratio of chan-

nels going to the global branch of fast Fourier convolution, based on the U-Net level.

Higher U-Net levels work with higher-resolution data, rich in periodic structures, while

lower levels operate at a coarser scale lacking such periodic structures. We decrease α

from 0.75 at the topmost level to 0 at the bottom layer in steps of 0.25.

Training
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Figure 15: Proposed architectures for speech enhancement. Left: fast Fourier convolutional autoencoder

which adopts architecture introduced in [52] for speech enhancement task. Right: fast Fourier convolu-

tional U-Net. Parameter in_ch controls the overall width of the networks, N defines the number of FFC

residual blocks, K is the depth of the FFC-UNet architecture, α (real number ∈ [0, 1] in case of FFC-AE,

K numbers ∈ [0, 1] in case of FFC-Unet) controls the proportion of channels going to the global branch.

To convert the predicted STFT representation into a waveform, we use inverse short-

time Fourier transform. Training follows a multi-discriminator adversarial. It includes

three losses: LS-GAN loss LGAN , feature matching loss LFM , and mel-spectrogram loss

LMel. The losses are as follows:

L(θ) = LGAN(θ) + λfmLFM(θ) + λmelLMel(θ)

L(φi) = LGAN(φi), i = 1, . . . , k.

Here, L(θ) denotes the loss for the generator with parameters θ, and L(φi) denotes

the loss for the i-th discriminator with parameters φi. All discriminators are identical but

initialized differently. In all experiments, we set λfm = 2, λmel = 45, and k = 3.
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Results

Datasets We evaluated the effectiveness of speech denoising models using two bench-

marks. The audio recordings were sampled at 16 kHz.

The first benchmark is the VoiceBank-DEMAND dataset [50], consisting of a train set

with 28 speakers and 11572 utterances at 4 signal-to-noise ratios (SNR) (15, 10, 5, and

0 dB). The test set (824 utterances) features 2 speakers not seen during training, with 4

SNR levels (17.5, 12.5, 7.5, and 2.5 dB).

The second benchmark is the Deep Noise Suppression (DNS) challenge, where we

synthesized 100 hours of training data without artificial reverberation. The models were

tested on two test sets: DNS-INDOMAIN (hold-out data from the 100-hour training set)

and DNS-BLIND (real-world noisy recordings).

Metrics For objective evaluation, we used standard metrics, including WB-PESQ [54],

extended STOI, SI-SDR [55], COVL, CBAK, and CSIG. Additionally, we considered an

objective speech quality measure (WV-MOS) based on direct MOS score prediction using

a fine-tuned wav2vec2.0 model, which showed strong correlation with subjective quality

measures.

For subjective quality evaluation, we conducted 5-scale MOS tests. Audio clips were

normalized, and the referees were English speakers with proper listening equipment.

Experimental Setup In our experiments, signals were transformed to the spectral

domain using STFT with a Hann window of size 1024 and a hop size of 256. We used

specific parameter values for different model versions. FFC-AE employed α = 0.75,

N = 9, in_ch = 32 for V0, and in_ch = 64 for V1. FFC-UNet used K = 4, N = 4,

in_ch = 32, and a gradual decrease of α. All models were trained for 800,000 iterations

with a batch size of 8 and an Adam optimizer with a learning rate of 0.0002. ResUNet-

Decouple+ followed the same training setup as reported in the original paper, with 800,000

iterations and a learning rate of 0.0002.

Experimental Results We compared our proposed models with various baselines

from the literature, including FullSubNet and DEMUCS, as well as models like vanilla

U-Net and FFC-AE (abl.). The comparison was conducted on both benchmarks.

For VoiceBank-DEMAND (see Table 7), our models achieved significantly better MOS

scores than all the baselines and performed competitively in terms of objective metrics.

On the DNS benchmark (see Table 8), our models exhibited superior quality compared to
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competitors on the DNS-INDOMAIN test set and competitive performance with FullSub-

Net on the DNS-BLIND test set, which is a notable achievement considering FullSubNet’s

high ranking in the DNS Challenge 2021.

Notably, our models achieved these results without employing dynamic data synthesis,

reverberation simulation, or augmentation techniques, which some of the closest baselines

relied on. Further improvements in generalization to the blind test set can be explored

with advanced data generation pipelines.

Table 7: Speech denoising results on Voicebank-DEMAND dataset. Best three results are highlighted in

bold.

Model MOS WV-MOS SI-SDR STOI PESQ CSIG CBAK COVL # Params (M) # GMAC on 16k

Ground Truth 4.46± 0.06 4.50 - 1.00 4.64 5.0 5.0 5.0 - -

Input 3.44± 0.06 2.99 8.4 0.79 1.97 3.34 2.82 2.74 - -

MetricGAN+ [48] 3.82± 0.06 3.90 8.5 0.83 3.13 4.12 3.16 3.62 2.7 -

ResUNet-Decouple+ [49] 3.94± 0.04 4.13 18.4 0.84 2.45 3.38 3.15 2.89 102.6 -

DEMUCS (non-caus.) [45] 4.06± 0.03 4.37 18.5 0.87 3.03 4.36 3.51 3.72 60.8 -

VoiceFixer [56] 4.10± 0.03 4.14 -18.5 0.75 2.38 3.6 2.37 2.96 122.1 34.4 (x2)

HiFi++ [57] 4.15± 0.07 4.27 18.4 0.86 2.76 4.09 3.35 3.43 1.7 1.5(x2)

FFC-AE-V0 (ours) 4.24± 0.09 4.34 17.9 0.86 2.88 4.25 3.40 3.57 0.42 4.39

FFC-AE-V1 (ours) 4.33± 0.03 4.37 17.5 0.87 2.96 4.34 3.42 3.66 1.7 16.33

FFC-UNet (ours) 4.28± 0.03 4.38 18.1 0.87 2.99 4.35 3.47 3.69 7.7 19.81

FFC-AE-V1 (abl.) 3.98± 0.07 4.05 16.7 0.84 2.68 3.94 3.23 3.31 2.9 2.25

vanilla UNet 4.10± 0.07 4.11 17.2 0.85 2.73 3.94 3.28 3.34 20.7 11.2(x2)

Table 8: Speech denoising results on DNS dataset. * indicates results on DNS-BLIND. Best three results

are highlighted in bold.

Model MOS MOS* WV-MOS WV-MOS* SI-SDR STOI PESQ CSIG CBAK COVL # Params (M) # GMAC on 16k

Ground Truth 4.40± 0.08 - 3.845 - - 1.00 4.64 5.0 5.0 5.0 - -

Input 2.75± 0.07 2.43± 0.08 1.195 0.80 - 0.69 1.49 2.59 2.32 1.99 - -

DEMUCS [45] 3.52± 0.15 2.94± 0.08 3.32 2.83 15.56 0.82 2.20 3.44 3.21 2.81 33.5 7.84

HiFi++ [57] 3.54± 0.08 2.75± 0.06 2.91 2.32 11.69 0.82 2.20 3.65 3.00 2.92 1.7 -

ResUNet-Dec+ [49] 3.63± 0.04 2.51± 0.08 2.94 1.86 14.78 0.81 2.09 2.82 3.06 2.43 102.6 -

FullSubNet [? ] 3.73± 0.02 3.08± 0.09 2.90 2.41 14.96 0.82 2.43 3.59 3.27 3.0 5.6 -

FFC-AE-V0 (ours) 3.92± 0.09 2.88± 0.09 3.20 2.58 12.86 0.83 2.44 3.84 3.17 3.15 0.42 4.39

FFC-AE-V1 (ours) 4.02± 0.05 3.10± 0.07 3.33 2.76 14.12 0.85 2.61 3.98 3.31 3.31 1.7 16.33

FFC-UNet (ours) 4.00± 0.06 3.11± 0.08 3.35 2.70 15.48 0.86 2.69 4.08 3.44 3.41 7.7 19.81
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4 Conclusion

This section presents a summary of the key contributions of our work. The main results

of the work are efficient parameterizations and architecture modules for GAN generators

for solving domain adaptation problem in computer vision and speech enhancement in

signal processing.

1. In HyperDomainNet we proposed a new StyleGAN parametrization for domain adap-

tation, which has only 6 thousand trained parameters compared to 30 million weights

in the conventional full parametrization. This parametrization is based on domain

modulation technique, which allows efficient modification of the generator weights

using a small training vector. In a series of extensive experiments for text-based and

image-based domain adaptation, we have shown that this parametrization achieves

the same quality as current methods that use the full parametrization of the Style-

GAN generator. We also proposed a new HyperDomainNet that solves the problem

of multi-domain adaptation. The idea is that from a textual description of a do-

main or an example of a domain picture, the hypernet predicts a domain vector that

the generator adapts using domain modulation technique. This makes it possible to

adapt on hundreds or thousands of new domains at once, without having to retrain

the generator on each domain individually. In experiments, we have shown that

HyperDomainNet allows adapting the generator to new domains in the same way

as conventional methods that work in single domain adaptation. Additionally, this

model showed promising generalisation results for unseen domains.

2. In StyleDomain we conduct a systematic analysis to address the adaptation of Style-

GAN across domains. Our investigation unfolds in two parts: initially, we pinpoint

which parts of StyleGAN require adaptation based on the similarity between source

and target domains. For similar domains, fine-tuning only the affine layers often

suffices, while more dissimilar domains necessitate optimizing additional parameters,

though not the entire network, indicating the potential for more efficient parame-

terizations. In the second part, we introduce two novel parameterizations: for simi-

lar domains, we propose StyleSpace, which optimizes adaptation directions without

fine-tuning all weights, and for more distant domains, we present Affine+, reducing

trainable parameters significantly while maintaining quality. Further refinement with
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AffineLight+ employs low-rank decomposition for affine layer weights, outperform-

ing complex baselines in few-shot adaptation. Additionally, we explore the properties

of StyleDomain directions, revealing their mixability and transferability, which can

create new styles or be applied to other fine-tuned StyleGAN models. These findings

are leveraged in various computer vision tasks, such as image-to-image translation

and cross-domain morphing.

3. In the HiFi++ paper, we introduce a novel HiFi++ generator architecture for band-

width extension and speech enhancement tasks. This architecture incorporates

new components, including spectral preprocessing (SpectralUnet), a convolutional

encoder-decoder network (WaveUNet), and learnable spectral masking (Spectral-

MaskNet), enabling our generator to effectively address these challenges. Extensive

experiments reveal that our model performs competitively with state-of-the-art so-

lutions in BWE and SE, while being notably more lightweight and maintaining su-

perior or equivalent quality. Additionally, in FFC-SE work we propose novel neural

architectures based on the fast Fourier convolution (FFC) operator, originally de-

signed for computer vision tasks. FFC’s global receptive field is advantageous for

complex spectrum prediction, particularly for handling periodic structures in spec-

trograms, aiding in producing coherent phases. Leveraging these insights, we design

new neural architectures for direct complex-valued spectrogram estimation in speech

enhancement, achieving state-of-the-art performance on VoiceBank-DEMAND and

Deep Noise Suppression datasets with significantly fewer parameters than baseline

methods.
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